Generation of blue chrysanthemums by anthocyanin B-ring hydroxylation and glucosylation and its coloration mechanism
نویسندگان
چکیده
Various colored cultivars of ornamental flowers have been bred by hybridization and mutation breeding; however, the generation of blue flowers for major cut flower plants, such as roses, chrysanthemums, and carnations, has not been achieved by conventional breeding or genetic engineering. Most blue-hued flowers contain delphinidin-based anthocyanins; therefore, delphinidin-producing carnation, rose, and chrysanthemum flowers have been generated by overexpression of the gene encoding flavonoid 3',5'-hydroxylase (F3'5'H), the key enzyme for delphinidin biosynthesis. Even so, the flowers are purple/violet rather than blue. To generate true blue flowers, blue pigments, such as polyacylated anthocyanins and metal complexes, must be introduced by metabolic engineering; however, introducing and controlling multiple transgenes in plants are complicated processes. We succeeded in generating blue chrysanthemum flowers by introduction of butterfly pea UDP (uridine diphosphate)-glucose:anthocyanin 3',5'-O-glucosyltransferase gene, in addition to the expression of the Canterbury bells F3'5'H. Newly synthesized 3',5'-diglucosylated delphinidin-based anthocyanins exhibited a violet color under the weakly acidic pH conditions of flower petal juice and showed a blue color only through intermolecular association, termed "copigmentation," with flavone glucosides in planta. Thus, we achieved the development of blue color by a two-step modification of the anthocyanin structure. This simple method is a promising approach to generate blue flowers in various ornamental plants by metabolic engineering.
منابع مشابه
Achievements and perspectives in biochemistry concerning anthocyanin modification for blue flower coloration.
Genetic engineering of roses and other plants of floricultural importance to give them a truly blue petal color is arguably one of the holy grails of plant biotechnology. Toward this goal, bluish carnations and roses were previously engineered by establishing an exclusive accumulation of delphinidin (Dp)-type anthocyanins in their petals via the heterologous expression of a flavonoid 3',5'-hydr...
متن کاملGenetic engineering of novel bluer-colored chrysanthemums produced by accumulation of delphinidin-based anthocyanins.
Chrysanthemums (Chrysanthemum morifolium Ramat.) have no purple-, violet- or blue-flowered cultivars because they lack delphinidin-based anthocyanins. This deficiency is due to the absence of the flavonoid 3',5'-hydroxylase gene (F3'5'H), which encodes the key enzyme for delphinidin biosynthesis. In F3'5'H-transformed chrysanthemums, unpredictable and unstable expression levels have hampered su...
متن کاملBiochemical and molecular characterization of a novel UDP-glucose:anthocyanin 3'-O-glucosyltransferase, a key enzyme for blue anthocyanin biosynthesis, from gentian.
Gentian (Gentiana triflora) blue petals predominantly contain an unusually blue and stable anthocyanin, delphinidin 3-O-glucosyl-5-O-(6-O-caffeoyl-glucosyl)-3'-O-(6-O-caffeoyl-glucoside) (gentiodelphin). Glucosylation and the subsequent acylation of the 3'-hydroxy group of the B-ring of anthocyanins are important to the stabilization of and the imparting of bluer color to these anthocyanins. Th...
متن کاملLysosomal Oxidative Stress Cytotoxicity Induced by Dacarbazine and It’s Pyridine Derivative in Hepatocytes
Dacarbazine (DTIC) is a synthetic chemical antitumor agent which is used to treat malignant melanoma and Hodgkin’s disease. DTIC is a prodrug which is converted to an active form undergoing demethylation by liver enzymes. The active form prevents the progress of disease via alkylation of DNA strand. In the structure of this drug, the imidazole ring, a triazen chain and carboxamide group ex...
متن کاملViolet/blue chrysanthemums--metabolic engineering of the anthocyanin biosynthetic pathway results in novel petal colors.
Chrysanthemums (Chrysanthemum×morifolium Ramat.) are an important cut-flower and potted plant crop in the horticultural industry world wide. Chrysanthemums express the flavonoid 3'-hydroxylase (F3'H) gene and thus accumulate anthocyanins derived from cyanidin in their inflorescences which appear pink/red. Delphinidin-based anthocyanins are lacking due to the deficiency of a flavonoid 3', 5'-hyd...
متن کامل